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Abstract

We consider the problem of network formation in a distributed fashion. Network formation is modeled as a
strategic-form game, where agents represent nodes that form and sever unidirectional links with other nodes and
derive utilities from these links. Furthermore, agents canform links only with a limited set of neighbors. Agents
trade off the benefit from links, determined by a distance-dependent reward function, and the cost of maintaining
links. When each agent acts independently trying to maximize its own utility function, we can characterize “stable”
networks through the notion of Nash equilibrium. In fact, the introduced reward and cost functions lead to Nash
equilibria (networks) which exhibit several desirable properties such as connectivity, bounded-hop diameter and
efficiency (i.e., minimum number of links). Since Nash networks may not necessarily be efficient, we also explore
the possibility of “shaping” the set of Nash networks through the introduction of state-based utility functions.
Such utility functions may represent dynamic phenomena such as establishment costs (either positive or negative).
Finally, we show how Nash networks can be the outcome of a distributed learning process. In particular, we extend
previous learning processes to so-called “state-based” weakly acyclic games and we show that the proposed network
formation games belong to this class of games.

I. INTRODUCTION

Recent advances in ad-hoc network technologies demand the development of efficientoverlay routing
or network formationprotocols over complex physical network structures, such as internet, cellular and
wireless networks. The objective of such overlay routing schemes is to achieve certain routing properties,
for example, small network diameter, small congestion and minimum communication cost, without the
need to standardize or deploy a new routing protocol [2]. Theadvantage of overlay routing in such
complex infrastructures can be significant, e.g., to divertcongested traffic in cellular netwroks [3]. Other
scenarios where overlay routing can be advantageous are, for example, peer-to-peer file transfering and
end-host multicasting [4].

The approaches that have been proposed for overlay routing include mostlycentralizedoptimization
schemes, where the information needed for each node to calculate an optimal routing path may involve the
collection of information from the whole network (see, e.g., [4], [3], [5]). However, centralized schemes
may suffer from several issues related to energy conservation, information and computational complexity.
Thus, recent trends in wireless networks technology (not necessarily restricted to overlay routing) have
focused more ondecentralizedschemes [6], when information and computational capacity available to
each node are limited.

To this end, more recent approaches utilize distributed optimization techniques to address the problem of
efficient overlay routing. In particular, several game-theoretic approaches have been considered, where each
node acts independently trying to maximize its ownutility functionor performance measure. The definition
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of such utilities is open-ended, e.g., end-to-end delays inthe node’s connections [7], and constitutes
one of the main challenges for such approaches. The main question emerging is whether such utility
function exists that (a) assumes minimum available information to each node (preferably local), and (b)
guarantees the establishment of desirable network configurations when each node maximizes myopically
its own performance measure. Since robust solutions in sucha distributed optimization framework can
be described with respect toNash equilibria, naturally, a secondary question emerging iswhether routing
layouts which correspond to Nash equilibria exhibit desirable properties(e.g., connectivity, small diameter
or small number of links).

This paper presents a distributed optimization approach tothe establishment of efficient networks for
overlay routing. Motivated by the current research on social networks [8], [9], we model the problem as
a strategic-form game. In this framework, each agent represents a node and decides which links to form
with its neighboring nodes so that its own utility is maximized. Our goal is toexplore how decision rules
at the node level can justify the emergence of various network configurations. This work can also serve
as a design tool for network formation, e.g., for overlay routing and topology control in ad-hoc networks
[10], [11], where minimum communication cost is a common requirement.

The remainder of the paper is organized as follows. Section II discusses related work on the subject of
efficient network formation and states the contributions ofthis paper. Section III presents the necessary
terminology and introduces the framework of state-based utility functions. Section IV presents the network
formation model and the different versions of reward/cost functions. Section V analyzes the set of Nash and
efficient networks of the network formation games. Section VI presents two different learning processes
and analyzes their convergence properties when applied to network formation games. Section VI also
presents selected illustrative simulations. Finally, Section VII presents concluding remarks.

II. RELATED WORK

Several models for distributed network formation have beenproposed that are based on game-theoretic
formulations. These includestatic models, where the problem of network formation is usually modelled
as a strategic-form game of several agents (or nodes), whereagents’ actions correspond to network links.
Such approach was first considered by [12] where agents propose links sequentially which are then
accepted or rejected, forming an extensive-form game. These studies characterize networks in terms of
the Nash equilibria of the associated game, calledNash networks. An improvement over such model was
presented in [13], where agents simultaneously announce their preferences for links, and a link is formed
only if both agents agree. One of the issues emerging in such model is the multiplicity of Nash equilibria.
Reference [14] further discussed the relationship of the emerging equilibria with the concept ofpairwise
stability. Another static model, which is closer to the work of cooperative games [15], was presented in
[8], where agents benefit from direct or indirect connections to other nodes (connections model). Reference
[8] discusses one of the main issues present in network formation games, that is, the discrepancy between
efficientandstable networks. Some extensions of these models include reference [14], which deals with
the problem of constructing utility functions for which efficient networks are pairwise stable, and reference
[16], which extends [8] to the case of directed links.

Although static modelscapture the stability properties of certain networks basedon node (agent)
objectives, they do not capturehow these networks emerge. Such questions can be answered by designing
dynamic modelsto capture how agents make decisions and how these decisionscontribute over time to
network formation. For example, reference [17] models network formation as a dynamic process, according
to which at each time instant, a pair of nodes is randomly selected and a link is added between them if
both agents benefit from it.

One of the main issues of dynamic formulations is the fact that the dynamic process may cycle. To
avoid such cycles, [18] introduced random perturbations tothe formation process. Somewhat parallel to
[18], reference [9] develops models of network formation that use tools fromnoncooperative game theory,
according to which agents can form and sever links unilaterally, i.e., no mutual consent is needed to form
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a link between two agents. A more recent work [19] has extended the model of [9] to the case where
agents may establish links only with a subset of other agents. A similar extension has been analyzed
independently in both the current and an earlier version of this paper [1].

A central implication of unilateral link formation [9] is that it leads to the concept ofNash equilibrium.
Naturally,best-reply dynamicshave been utilized to study convergence to Nash equilibria.Such dynamics
have also been employed in models with bilateral link formation [20]. Under such dynamics, agents are
usually aware of all other agents’ actions implying large information and computational complexity. To
avoid the resulting complexity, several dynamic models assume that agents learn how to play the game
through time by adaptively reacting to measurements of their own performance (utility). A few models
that belong to this category include [21], [22], where agents adaptively form and sever links in reaction
to an evolving network, and in some models, their decisions are subject to small random perturbations.
The rewards received from each agent determine which interactions will be reinforced, and the network
structure emerges as a consequence of the agents’ learning behavior.

Recently, distributed network formation have also been considered as a way for distributedoverlay
routing over complex physical network structures, e.g., internet,cellular and wireless networks. The
approaches that have been proposed for overlay routing include mostlycentralizedoptimization schemes.
For example, in [4], a centralized shortest-path algorithmis used to find overlay links that satisfy a QoS
requirement. Centralized information is also necessary in[3] for overlay routing in cellular networks
where each base station needs to exchange information with all the available sources. Also, in [5], a
centralized scheme for bandwidth-aware routing is introduced, where each node periodically measures
bandwidth capacity to every node in the network.

Game-theoretic approaches have also been considered to address the problem of overlay routing in order
to avoid issues due to information and communication complexity of centralized schemes. For example,
[23] models the problem of overlay routing in large-scale content sharing applications as a strategic-form
game. However, the resulting game may not exhibit Nash equilibria, while Nash equilibria (if exist) cannot
be explicitly characterized. A noncooperative game formulation for overlay routing is also considered in
[7], where the cost function of each node accounts for the end-to-end delays in its connections. Reference
[7] characterizes the best-reply strategy for each node andcomputes pure Nash equilibria through iterative
best-response search.

The above game-theoretic formulations for distributed network formation or overlay routing reveal
some of the main issues present in such approaches, that is: (a) information complexity for best-reply
computation, i.e., computation of best-reply assumes that each player is aware of the previous actions of
all other agents (see, e.g., [9], [7]), (b)existence and characterization of Nash networks, i.e., showing
that Nash networks exist and characterizing those networksmay not be possible (see, e.g., [23]), (c)
non-efficiency of Nash networks(see, e.g., [9]), (d)distributed convergence to desirable Nash networks,
i.e., most proposed schemes assume best-reply dynamics forconvergence to Nash networks which might
be infeasible (see, e.g., the discounted connections modelin [9]).

This paper presents a novel game-theoretic approach for distributed network formation that addresses
most of the above issues. Our approach is mostly related to dynamic and evolutionary models, such as
[9], [16], [21], [22]. In particular, we consider agents that have freedom over establishing or severing
unidirectional links with neighboringagents based on myopic considerations. Unidirectional links model
phenomena such as web links, observations of others, citations, etc. [24].

Specifically, our contributions are the following: (i) We discuss the case where nodes can form links
only with a subset of the other nodes (i.e., neighborhood structures), as opposed to the entire network;
(ii) We introduce utility functions that are distance-dependent variations of theconnections modelof
[8] and guarantee that Nash networksexist and exhibit desirable properties, e.g., connectivity, efficiency
and bounded-hop diameter; (iii) We introducestate-dependent utility functionsthat can model dynamic
phenomena such asestablishment costsand can be used as an equilibrium selection mechanism in favor of
efficient Nash networks; (iv) We derive a learning process that guarantees convergence to Nash equilibria
for the state-based extension ofweakly acyclicgames, among which the proposed network formation
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games; and (v) We employpayoff-baseddynamics for distributed convergence to Nash networks based
on a modified reinforcement learning scheme [25], and drop the typical assumptions that nodes have
knowledge of the full network structure and can compute optimal link decisions.

III. T ERMINOLOGY & BACKGROUND

A. Games with state-based utilities

A game involves a finite set ofagents(or players), I = {1, 2, ..., n}. Each agenti has a finite number
of actions, denoted byAi. We will enumerate the actions of each agenti and letαi denote the index of
agenti’s action. The total number of actions of agenti is denoted by|Ai|. DefineA to be the Cartesian
product of the action spaces of all agents, i.e.,A , A1 × ...×An. Let alsoα = (α1, α2, ..., αn) ∈ A be
the action profileof all agents.

For any positive integerm, ∆(m) denotes the probability simplex inRm, i.e., ∆(m) , {x ∈ Rm :
x ≥ 0, 1Tx = 1}, where1 is a vector of ones of appropriate size. The vectorsej , j = 1, 2, ..., m, denote
the vertices of∆(m). In some cases and by abusing notation, we will identify actions by vertices of the
simplex (instead of indices), i.e.,αi = ej implies that agenti selected actionj ∈ Ai.

In strategic-form games, after each agenti ∈ I has selected an actionαi ∈ Ai, agents are assigned
utilities, i.e., evaluations of their own performance. Usually, suchutilities are represented as instances of
a functionvi : A → R+, called utility function, that takes values in the set of action profiles. In other
words, the utility of each agenti depends, in general, on the actions of all players(α1, α2, ..., αn) ∈ A.

In order to also incorporate dynamic phenomena in the utilities such as establishment costs, we will
assume that agents measure a utility or payoff that depends on two variables: the action profile,α, and
an internal agent-specific state,xi. The definition of this state variable is open ended (cf., “state-based”
utility functions in [26] and “sometimes weakly acyclic” games in [27]). In the present setting, we restrict
xi to the simplex∆(|Ai|) and interpret thejth entry ofxi, xij ∈ [0, 1], as the “familiarity” weighting of
agenti with actionj ∈ Ai. Sincexi is in the simplex, these relative weights sum to one.

We now definestate-based utility functionsas follows.
Definition 3.1 (State-based utility function):A state-based utility function mapsvi : A×∆(|Ai|) → R+

with vi(α, xi) being the payoff of agenti at joint actionα and at (familiarity) statexi.
The expressionvi(α, αi) is taken to meanvi(α, xi) evaluated atxi = αi. In that case, the familiarity
vectorxi corresponds to a unit vector, sayej, i.e., the “familiarity” weighting of agenti with actionj is
1, while the corresponding weighting with other actions is 0.

In several cases, we will need to compare joint action profiles based onefficiency. To this end, we
defineefficient action profilesas follows:

Definition 3.2 (Efficient action profile):Define the value functionV (α) ,
∑

i∈I vi(α, αi). An efficient
action profile is an action profileα∗ ∈ A such thatV (α∗) = maxα∈A V (α).

Let −i denote the complementary setI\{i}. We will often split the argument of a function in this way,
e.g.,F (α) = F (αi, α−i). The following extends the notion ofbetter replyto state-based utility functions.

Definition 3.3 (Better reply):The better reply set of agenti ∈ I to an action profileα = (αi, α−i) ∈ A
is a functionBRi : A → Ai such that for anyα∗

i ∈ BRi(α) we have

vi((α
∗
i , α−i), αi) > vi((αi, α−i), αi). (1)

Note that better reply is a set-valued function and might be empty. Furthermore, when we evaluate the
better reply set of an agenti to an action profileα = (αi, α−i), the underlying familiarity state in the
agent’s state-based utility is assumed to be the corresponding action of that agent,αi.

Based on this definition of better reply, we introduce the notion of a “stable” action profile by extending
the definition of a Nash equilibrium to state-based utility functions.

Definition 3.4 (State-Based Nash equilibrium):An action profileα∗ is a (state-based) Nash equilibrium
if BRi(α

∗) = ∅ for every i ∈ I, i.e.,

vi((α
∗
i , α

∗
−i), α

∗
i ) ≥ vi((α

′
i, α

∗
−i), α

∗
i ), (2)
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for all α′
i ∈ Ai\{α∗

i } and i ∈ I. Likewise, a strict (state-based) Nash equilibrium satisfies the strict
inequality in (2).

For the remainder of the paper, we will refer to a state-basedNash equilibrium as a Nash equilibrium.

B. Coordination games

In this section, we introduce sufficient conditions for the existence of state-based Nash equilibria. To
this end, it is necessary to first introduce the notion of animprovement stepdefined as follows:

Definition 3.5 (Improvement step):The improvement step function of agenti ∈ I to an action profile
α = (αi, α−i) ∈ A is a functionISi : A → Ai such that for anyα∗

i ∈ ISi(α) the following two conditions
are satisfied:

1) vi((α
∗
i , α−i), αi) > vi((αi, α−i), αi),

2) vi((α
∗
i , α−i), α

∗
i ) > vi((αi, α−i), αi).

Note that ifα∗
i is an improvement step for agenti to the action profileα, i.e., α∗

i ∈ ISi(α), thenα∗
i

is also a better reply toα. Accordingly, if α is a Nash equilibrium profile, i.e.,BRi(α) = ∅ for all
i ∈ I, then we also haveISi(α) = ∅. The converse is not necessarily true, i.e., there might notbe an
improvement step from an “unstable” action profile.

We utilize the notion of an improvement step to derive sufficient conditions for the existence of Nash
equilibria. To this end, we introduce the following class ofgames.

Definition 3.6 (Coordination game):A coordination game is such that there exists a functionφ : A →
R with the following property: for any action profileα = (α1, ..., αn) ∈ A other than a Nash equilibrium,
there exist an agenti ∈ I such thatISi(α) 6= ∅, and an actionα′

i ∈ ISi(α) such that

φ(α′
i, α−i) > φ(αi, α−i).

We will refer to this property ascoordination propertyand the functionφ ascoordination function.
In words, a coordination game is such that at any action profile other than a Nash equilibrium, there

exist an agent and an action which can improve both its own payoff and the value of the coordination
functionφ. Such a feature introduces a weak form ofordinal potential games(cf. [28]).

Such a feature is also related to a form of “coincidence of interests.” Note that prior definitions of
coordination games, e.g., by [29], [30], assume stronger conditions. For example, in [30], a coordination
game is defined such thatany better reply (for non-state-based utilities) makes no other agent worse off.

The following is a straightforward consequence of the definition of coordination games.
Claim 3.1: For coordination games, any action profile which maximizes the coordination functionφ is

a Nash equilibrium.
This claim can be used to relate efficient action profiles withNash equilibria whenφ corresponds to

the value function.
Claim 3.2: For any coordination game such that the coordination function φ corresponds to the value

function, i.e.,φ = V , any efficient action profile is a Nash equilibrium.
Another straightforward consequence of the definition of a coordination game is the following.
Claim 3.3: For coordination games, starting from any action profileα ∈ A, there exists a finite sequence

of action profiles{α0, α1, ..., αm}, such thatα0 = α, αk
i ∈ ISi(α

k−1) for some i, and αm is a Nash
equilibrium.

Setting aside the state-based aspect, this claim indicatesthat coordination games defined here resemble
weakly acyclic games (cf., [31]).

The coordination property introduced here will be particularly useful in (a) showing existence of Nash
equilibria (due to Claim 3.3) in network formation games, and (b) designing distributed learning schemes
for convergence to Nash equilibria, as we will discuss in theforthcoming sections.
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IV. THE NETWORK FORMATION MODEL

A. One-way benefit flow

We will consider aone-way(directed) benefit flow model, where a directednetworkG consists of the
non-empty finite set of agents (ornodes) I and a finite set of pairwise directed links (oredges) E .

A directed link from nodei to node j, j 6= i, is denoted(i, j), which represents flow of bene-
fits/information from i to j. A path from i to j in G, (i → j) is a sequence of distinct nodes that
starts ati and ends atj, i.e., (i → j) = {i = s0, s1, ..., sm = j} for some positive integerm, such that
(sk, sk+1) ∈ E for 0 ≤ k ≤ m− 1. The number of links in the path(i → j) is denoted|(i→ j)|. For
nodesi andj in G, thedistance fromi to j, denoteddistG(i, j), is the minimum length of a path(i→ j),
if j is reachable fromi, i.e., distG(i, j) , min(i→j)⊆G |(i→ j)|. If there is no path fromi to j in G, then
by conventiondistG(i, j) = ∞. Also distG(i, i) = 0 for every nodei ∈ I.

Definition 4.1 (Connectivity):A networkG is connected if for alli 6= j, (i→ j) ⊆ G.
Two useful subclasses of connected networks arecritically connected networksandminimally connected

networks.
Definition 4.2 (Critical connectivity):A networkG is critically connected if (i) it is connected and (ii)

if (i, j) ∈ G, then the unique path(i→ j) is (i, j).
In words, a critically connected network is such that if the link from agenti to (neighboring) agentj

is dropped, then there is no path(i→ j) in the network.
Definition 4.3 (Minimal connectivity):A networkG is minimally connected if (i) it is connected and

(ii) it has the minimum number of links.
Note that a minimally connected network will also be critically connected. The converse is not neces-

sarily true.

B. Action spaces and neighborhood structures

We assume that each agenti may establish links only with its neighbors, denoted byNi with cardinality
|Ni|. In the unconstrained neighbors case,Ni = I\{i}. For the remainder of the paper, we will assume
that the neighborhoods are such that connectivity is always feasible.

The set of actions of agenti, denotedAi, contains all possible combinations of neighbors with which
a link can be established including the case of establishingno links, i.e.,Ai = 2Ni. The notation|αi|
denotes the cardinality ofα ∈ 2Ni.

By abuse of notation, we will useαi ∈ Ai to refer to either an element ofAi = 2Ni, or an index over
Ai. Likewise, we will useα to denote the network,G, induced by the collective actionsα ∈ A, and so
we may write expressions such asdistα(i, j) rather thandistG(i, j).

C. Reward and cost functions

The state-based utility function of agenti is a function of the formvi : A× ∆(|Ai|) → R+, where

vi(α, xi) , Ri(α) − Ci(αi, xi).

The functionRi : A → R+ is the reward of agenti, and the functionCi : Ai × ∆(|Ai|) → R+ is the
cost of the action of agenti. We will consider several forms of the reward and cost function defined in
the following sections specifically tailored for network formation.

1) Connections reward model:Assume that each individual is a source of benefits that others can
access via the formation of links. In particular, a link withanother agent inherits the benefits available to
that agent via its own links. Following [8], define the connections reward function:

Ri(α) ,
∑

s∈I\{i}

χα(s→ i) (3)
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where

χα(s→ i) ,

{

δdistα(s,i), distα(s, i) <∞;

0, distα(s, i) = ∞

for someδ ∈ (0, 1]. We will refer to the case ofδ = 1 as thefrictionless benefit flowand to the case of
δ < 1 as thedecaying benefit flow.

This reward function has also been used in a game-theoretic formulation for topology control in wireless
ad-hoc networks by [32]. However, in [32], the action space is the neighborhood range and every two
nodes within the same range are always connected with a bidirectional link. Instead, here links are assumed
directional to reduce communication and agents have the ability to choose over which links to establish
assuming a given neighborhood layout. In [8], [9], [17] the same reward function has been considered
but without the neighborhood constraints imposed on the action space.

Reference [9] also considers the possibility of decaying benefits. As we shall see later, such a reward
function can establish an upper bound in the distance among any two neighboring nodes at any Nash
equilibrium. However, for the case ofδ < 1, existence of Nash equilibria is not guaranteed. This is a
main reason of introducing the forthcominglimited connections reward model.

2) Limited connections reward model:We consider here an alternative reward function that keeps track
only of those neighbors which are at mostK-hops away, whereK ∈ N. Define thebenefitfunction of
agenti ∈ I as

βi(α) ,
∑

s∈Ni

χK
α (s→ i), (4)

where

χK
α (s→ i) ,

{

1, distα(s, i) ≤ K;

0, distα(s, i) > K.

In other words, the benefit function of agenti counts the number of neighbors within distanceK. One can
think of neighbors in this setting as favorite agents. Although an agent can access its favorites directly,
doing so incurs both an establishment and maintenance cost (forthcoming). Therefore, an agent may seek
to gain indirect access to its favorites.

Unfortunately, the above utility function does not necessarily define a coordination game for a generic
neighborhood structure. This implies that Nash equilibriamay not exist. To resolve this issue, we modify
the reward to include “downstream” effects of an agent’s actions.

For agenti ∈ I, define the set of nodes that are accessing agenti as:

Bi(α;K) , {j ∈ I : (i→ j) ∈ α anddistα(i, j) ≤ K − 1}.

This set describes the downstream beneficiaries of links made by agenti. Define the downstream deficiency
of agenti as:

di(α) ,
∑

j∈Bi(α;K)

{

1 βj(α) < |Nj| ;

0 otherwise.

An agent at full benefit capacity hasβj(α) = |Nj |; otherwise, the agent has a deficiency. The function
di(α) counts the number of downstream beneficiaries that are deficient.

We now define thelimited connectionsreward model as follows. For0 < γ < 1, define

Ri(α) , βi(α)
(

1 − γ
di(α)

1 + di(α)

)

. (5)

In words, this function rewards connections to neighbors, but at a reduced rate because of possible
downstream deficiencies. In case of no such deficiencies, i.e., di(α) = 0, the reward equals the benefit
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function.
3) A state-based cost:The cost function of agenti, Ci : Ai × ∆(|Ai|) → R+, is defined as:

Ci(αi, xi) , κ0 |αi| + κ1ψi(αi)
T(1 − ψi(xi)), (6)

with κ0 ≥ 0, κ1 ∈ R, andψi : ∆(|Ai|) → R|Ni| defined by[ψi(xi)]j ,
∑

{a∈Ai:j∈a} xia. (Recall that we are
usinga as both an index, as inxia, and a set, as inj ∈ a ∈ 2Ni.) In words,[ψi(xi)]j denotes the probability
that agenti will form a link to neighborj based on the distributionxi. The term(1 − ψi(xi))

Tψi(αi)
grows with misalignment of the actionαi with the distributionxi. In the perfectly aligned case, for any
αi ∈ Ai (viewed as a vertex of∆(|Ai|)),

ψi(αi)
T(1 − ψi(αi)) = 0

whereas in the worst case,
max

xi

ψi(αi)
T(1 − ψi(xi)) = |αi| .

The first part of the cost function (6) corresponds to the costof maintaining the currently established
links. The statexi reflects familiarity with a particular set of links. Accordingly, the second part corresponds
to an establishment cost. The establishment cost models possible inertia of the system. Whenκ1 > 0,
this term represents the effort necessary to establish a newlink, whereas in the caseκ1 < 0, it represents
incentives to explore.

V. NASH EQUILIBRIUM NETWORKS

A. Existence, Connectivity, and Efficiency

We begin by establishing existence of Nash equilibria by deriving sufficient conditions for the network
formation games defined here to be coordination games. For the remainder of this paper, we will use the
following shorthand notation to represent the specific network formation game under discussion:

− C: The connections reward function (3) and state-based cost function (6).
− L: The limited connections reward function (5) and state-based cost function (6).
Proposition 5.1 (Coordination property):Let κ1 ≥ 0.
1) C is a coordination game forδ = 1 andκ0 + κ1 < 1.
2) L is a coordination game for

κ0 + κ1 < 1 − γ & κ0 <
|Ni|

|Ni| − 1
·
γ

2
, for all i ∈ I.

Proof: See Appendix.
In other words, Proposition 5.1 derives conditions for the cost parametersκ0 and κ1 under which

the resulting network formation game is a coordination game. Due to this property and Claim 3.3 the
resulting network formation games admit Nash equilibria. More specifically, the following properties are
direct consequence of Proposition 5.1 and its proof.

Proposition 5.2 (Nash equilibrium connectivity):Under the hypotheses of Proposition 5.1,
1) Both C andL admit Nash equilibria.
2) If α∗ is a Nash equilibrium inC, thenα∗ is connected.
3) If α∗ is a Nash equilibrium inL, thendistα∗(j, i) ≤ K, for all i ∈ I and j ∈ Ni.

We comment that condition 2 remains true in theC framework forκ0 + κ1 < δ < 1. However, in the
case of decaying benefit flow (i.e.,δ < 1), the existence of a Nash equilibrium is not guaranteed under
neighborhood structures.

We will refer to Nash equilibria of these network games asNash networks. Note that because of the
state-based utility functions, these Nash networks need not coincide with Nash networks from prior studies.

Finally, the following proposition relates efficiency withNash equilibria.
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Proposition 5.3 (Nash network efficiency):Under the hypotheses of Proposition 5.1, for bothC andL,
efficient networks are Nash networks with a minimum number oflinks.

Proof: As we showed in the proof of Proposition 5.1, bothC andL satisfy the coordination property,
where the coordination functionφ is defined as the network value (15). Due to the coordination property
and Claim 3.2, efficient action profiles are Nash networks. Inthe case ofC, the value at a Nash network,
α∗, is V (α∗) = n(n− 1)− κ0

∑

i∈I |α
∗
i | , due to the connectivity property (Proposition 5.2). Likewise, in

the case ofL, the value of the network at a Nash network,α∗, is V (α∗) =
∑

i∈I |Ni| − κ0

∑

i∈I |α
∗
i | . In

either case, the value is maximized at a Nash network with minimum number of links.
Propositions 5.2–5.3 address one of the main issues relatedto designing network formation games, that

is, (a) showing existence of Nash equilibria, and (b)showing efficiency of Nash equilibria. In particular,
the introduced notion of coordination game provides a test criterion for existence of Nash equilibria in
network formation games. Furthermore, due to the coordination property of the designed utility functions
in C andL, the efficient networks (under the hypotheses of Proposition 5.1) are also Nash equilibria.

B. Special case:κ1 = 0

Nash networks have a special structure in caseκ1 = 0.
Proposition 5.4 (C Nash networks forδ = 1, κ1 = 0): Under the hypotheses of Proposition 5.1 and for

κ1 = 0, a network inC is a Nash network if and only if it is critically connected.
Proof: See Appendix.

For the connections modelC with δ = 1 andκ1 = 0, the Nash networks forn = 3 agents are shown
in Fig. 1. Both networks are critically connected.

1

2 3

1

2 3

Fig. 1. Two Nash networks forn = 3 agents inC with δ = 1 andκ1 = 0.

In other words, Proposition 5.4 revealed that Nash networksin C, whenδ = 1 andκ1 = 0, are networks
which are not only connected, but also critically connected, i.e., there exists at most one direct link between
any two nodes. Such property indirectly implies that the number of links for each node at a Nash network
is limited.

Proposition 5.4 (which was first derived in an earlier version of this paper [1]), extends [9, Proposi-
tion 3.1], according to which Nash networks are critically connected under unconstrained neighbors.

An appropriate generalization of a critically connected network is also a Nash network in theL frame-
work. Define aK-critically connected networkto be a critically connected network with the additional
property thatdistG(j, i) ≤ K for all i, j ∈ I andj ∈ Ni.

Proposition 5.5 (L Nash networks forκ1 = 0): Under the hypotheses of Proposition 5.1 and forκ1 =
0, a network inL is a Nash network if it isK-critically connected.

Proof: Following the proof of Proposition 5.4, letα∗ be aK-critically connected network, and letα′
i

be a better reply. From the proof of Proposition 5.1, we can assume thatα′
i maintains a radius ofK for

all of Ni. Furthermore, the assumption onκ0 implies thatα′
i does not induce any downstream deficiencies

in Bi(α
∗;K). Therefore, as in the proof of Proposition 5.4,|Ndrop| − |Nadd| > 0, and so one can apply

the same arguments.
Note that the reverse implication may not hold.

In theC framework with decaying benefits (δ < 1), the Nash equilibrium condition imposes a structural
constraint on the distances between nodes.

Proposition 5.6 (C Nash networks forδ < 1, κ1 = 0): For C with δ < 1, 0 < κ0 < δ, andκ1 = 0, let
α∗ be a Nash network corresponding to the joint actionα∗ ∈ A. For any agenti, if |α∗

i | < |Ni|, then

δdistα∗(j,i) ≥ δ − κ0 for all j ∈ Ni. (7)
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Proof: Let α∗
i satisfy the assumptions of Proposition 5.6, and compare an alternative actionα′

i ∈ Ai

that consists of adding a direct link to neighborj, i.e.,α′
i = αi ∪ {j}. The resulting utility to agenti can

be bounded by
vi((α

′
i, α

∗
−i), α

∗
i ) ≥ vi((α

∗
i , α

∗
−i), α

∗
i ) + (δ − δdistα∗ (j,i)) − κ0.

That is, the consequence of adding a link toj shortens the distances to other links; adds the direct benefit
of a link to j; loses the indirect benefit of a link toj; and incurs additional maintenance cost. Therefore,
if (δ − δdistα∗ (j,i)) − κ0 > 0, then there is an incentive to add a link toj, and soα∗ cannot be a Nash
network. Conversely, asserting thatα∗ is a Nash network implies the desired result.

The condition|α∗
i | < |Ni| means that agenti is not using all of its available links. The inequality (7) is

revealing only for neighbors ofi for which there is no direct link. This could be of interest, for example,
in the unconstrained neighbors case with a large number of agents.

This theorem can be used to bound distances to neighbors as follows. Inequality (7) is equivalent to

distα∗(j, i) ≤

⌊

log(δ − κ0)

log(δ)

⌋

, d.

A sufficient condition to bound the distance to neighbors byd is thenκ0 ≤ δ − δd.
For example, considerδ and κ0 such thatδ − δ2 ≤ κ0 < δ − δ3. According to Proposition 5.6, this

condition implies that in any Nash network the maximum distance that can be supported isd = 2. Under
these conditions, Fig. 2 shows two Nash networks. It is straightforward to show that both networks in
Fig. 2 are also Nash networks for theL framework whenK = 2 and for unconstrained neighbors.

1

2 3

4

1

2 3

4

Fig. 2. Two Nash networks forn = 4 agents underC with δ − δ2
≤ κ0 < δ − δ3 andκ1 = 0.

Note, finally, that Proposition 5.6 does not address whetheror not Nash equilibria exist inC for δ < 1.

C. Strict Nash networks and smallκ1

A forthcoming section deals with a distributed learning process based on reinforcement learning. It
turns out that under certain conditions, this process can converge to strict Nash equilibria, but not to
action profiles which are not Nash equilibria. The followingpropositions relate strict Nash equlibria for
small κ1 to Nash equilibria forκ1 = 0.

We start with considering positive establishment cost.
Proposition 5.7 (Nash networks for smallκ1 > 0): Under the hypotheses of Proposition 5.1, for both

C andL, there exists̄κ1 > 0 such that:
1) If α is not a Nash network forκ1 = 0, thenα is not a Nash network forκ1 ∈ (0, κ̄1);
2) If α is a Nash network forκ1 = 0, thenα is a strict Nash network forκ1 ∈ (0, κ̄1).

Proof:
Part 1: Supposeα is not a Nash network forκ1 = 0. Then there exists a better reply,α′

i 6= αi such that

Ri(α
′) − κ0 |α

′
i| > Ri(α) − κ0 |αi| ,

whereα′ = (α′
i, α−i). This α′

i remains a better reply for non-zeroκ1 as long as

Ri(α
′) − κ0 |α

′
i| − κ1ψ(α′

i)
T(1 − ψ(αi)) > Ri(α) − κ0 |αi| .
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Define

κ̄1 , min
i∈I

α,α′∈A

Ri(α
′) + κ0(|αi| − |α′

i|) −Ri(α)

ψ(α′
i)

T(1 − ψ(αi))

subject toα not a Nash network andα′
i ∈ BRi(α). This minimization involves strictly positive values

over a finite set. Therefore, the minimum is also strictly positive.
Part 2: Supposeα is a Nash network forκ1 = 0. Then for alli ∈ I andαi ∈ Ai,

Ri(α) − κ0 |αi| ≥ Ri(α
′
i, α−i) − κ0 |α

′
i| .

Therefore, for positiveκ1,

Ri(α) − κ0 |αi| ≥ Ri(α
′
i, α−i) − κ0 |α

′
i| − κ1ψ(α′

i)
T(1 − ψ(αi)).

The question is whether the above inequality is strict. Recall the distinct setsNkeep, Ndrop, andNadd

defined in (16). Clearly ifNadd 6= ∅, the above inequality is strict. Now suppose thatNadd = ∅ while
Ndrop 6= ∅ and

Ri(α) − κ0(|Nkeep| + |Ndrop|) = Ri(α
′) − κ0 |Nkeep| .

This equality means thatα′ is also a Nash network forκ1 = 0, but with α′
i fewer links thanαi. This

conclusion violates the derived connectivity properties of Nash networks.
In other words, Proposition 5.7 states that when we increaseκ1 from zero to a positive value, the set of

Nash networks remains identical with the case ofκ1 = 0, however, all Nash networks become strict. This
observation has several implications when we discuss distributed learning processes in network formation
games, since strict Nash networks are potential attractorsof the learning process, while non-strict Nash
networks may not be. Thus, by increasingκ1, we are able to shape the set of strict Nash networks to all
critically connected networks (due to Proposition 5.4).

The case of negative establishment cost, i.e.,κ1 < 0, can be viewed as rewarding exploration. The
consequences are as follows.

Proposition 5.8 (Nash networks for smallκ1 < 0): Assume the hypotheses of Proposition 5.1 withκ1 =
0. For bothC andL, there exists aκ1 < 0 such that:

1) If α is not a Nash network forκ1 = 0, thenα is not a Nash network forκ1 ∈ (κ1, 0);
2) If α is a non-strict Nash network forκ1 = 0, thenα is not a Nash network forκ1 ∈ (κ1, 0);
3) If α is a strict Nash network forκ1 = 0, thenα is a strict Nash networkκ1 ∈ (κ1, 0).

Proof:
Part 1: Sinceκ1 is negative, this automatically preserves thatα is not a Nash network.
Part 2: Suppose thatα is a non-strict Nash network forκ1 = 0, and letα′

i satisfyRi(α) − κ0 |αi| =
Ri(α

′) − κ0 |α′
i| . Then α′ is also a non-strict Nash network forκ1 = 0. As argued in the proof of

Proposition 5.7,|αi| = |α′
i|. Therefore, there are links inα′

i not in αi. For κ1 < 0, α′
i ∈ BRi(α).

Part 3: If α is a strict Nash network forκ1 = 0, then for all i ∈ I, we haveRi(α) − κ0 |αi| >
Ri(α

′
i, α−i) − κ0 |α′

i| . This remains a strict Nash network as long as

Ri(α) − κ0 |αi| > Ri(α
′
i, α−i) − κ0 |α

′
i| − κ1ψ(α′

i)
T(1 − ψ(α)).

As in Proposition 5.7, the above inequality can be used to extract a lower bound onκ1 that preserves
strictness.

In other words, Proposition 5.8 states that by decreasing the value ofκ1 from zero to a negative value,
we can make the strict Nash networks of the caseκ1 = 0 to be the only Nash networks. This has the
opposite effect compared with Proposition 5.7. In fact, andas we will also explain in the following
section, we can exclude convergence to any Nash network other than the strict Nash networks of the case
κ1 = 0. This can be desirable in certain cases. For example, in the unconstrained neighbors case (i.e.,
whenNi ≡ I for all i ∈ I), and whenκ1 = 0, the only strict Nash equilibria are thewheel networks,
where each node has exactly one link (see, e.g., Fig. 1 for thecase of three nodes). In this case, the strict
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Nash networks are minimally connected, and they are the onlyNash networks for small negative values
of κ1.

Both Propositions 5.7–5.8 reveal the potential of state-based utility functions in shaping the set of Nash
equilibria towards ones which exhibit more desirable properties.

VI. L EARNING DYNAMICS

Thus far, the “state” in the state-based utility has only served to shape the set of strict Nash networks.
In this section, the value of this state will be inherited from the state of a learning process. In this dynamic
setting, the interpretation of the state reflecting “familiarity” will be apparent. We present two forms of
learning dynamics. The first is “action-based”, i.e., each player can observe the actions of other players.
These dynamics will resemble a state-based variation ofadaptive playdefined in [33]. We will show that
these dynamics globally converge to a Nash network. The second form of learning dynamics is based
on reinforcement learning. A desirable characteristic is that these dynamics are “payoff-based”. Agents
cannot observe the overall network. Rather, agents only measure their utility received from the network.
We will show that these dynamics locally converge to a strictNash network.

A. Adaptive play

The “state” in the state-based utility will evolve over stages, t = 0, 1, 2, .... Let M ≥ 1 be an integer,
denoting “memory length”. For eachi ∈ I, define

xi(t+ 1) =
1

M

M−1
∑

τ=0

αi(t− τ), (8)

where we associate each actionαi(t) as a vertex of∆(Ai). In words,xi(t+1) is the empirical frequency
of the actions of agenti over the previousM stages.

We will need to extend the definition of better reply. Define the set-valued function:

BRi(α; xi) ,

{α∗
i ∈ Ai : vi((α

∗
i , α−i), xi) > vi((α

′
i, α−i), xi)} .

(In the previous definition,xi was set toαi.)
Let p ∈ (0, 1). Actions evolve according to the following (non-deterministic) rule:

αi(t) =

{

αi(t− 1), if BRi(α(t− 1); xi(t)) = ∅;

α′
i(t), otherwise,

(9a)

where

α′
i(t) ∈

{

αi(t− 1), with probability p;
BRi(α(t− 1); xi(t)), with probability 1 − p.

(9b)

Proposition 6.1:Assume the hypotheses of Proposition 5.1, state dynamics (8), and action selection
rule (9). In bothC and L framework,x(t) converges to a Nash network with probability one for any
integerM ≥ 1 and initializationα(τ), τ = 0, 1, ...,M − 1.

Proof: (sketch) Consider the following chain of events. With positive probability, all agents repeat
their actions forM stages prior to stageT . Then x(T ) = α(t − 1). At this stage, ifx(T ) is a Nash
network, then the dynamics have converged. Otherwise, there exists a single agent with a better reply.
Let this be the only agent that updates its strategy, while all others repeat. Now let all agents again repeat
their actions forM stages. According to Claim 3.3, this process can repeat until the state converges to a
Nash equilibrium. The probability of such a chain of events,say ε∗ is strictly positive (however small).
Therefore, by the Borel-Cantelli Lemma (cf., Lemma 3.14 in [34]), the process eventually converges to a
Nash network.
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B. State-based reinforcement learning

Our reinforcement learning scheme assumes that at each stage t = 0, 1, 2, ..., each agenti selects an
actionαi(t) ∈ Ai according to the probability distribution

(1 − λ)xi(t) +
λ

|Ai|
1, (10)

where (i)xi(t) ∈ ∆(|Ai|) is thestrategyof agenti at staget; (ii) 1 is a vector of appropriate dimension
with each element equal to1; and (iii) λ ≥ 0 is a parameter used to model possible perturbations in the
decision making process, also calledmutations[33], [35].

The strategy of agenti is updated according to the recursion:

xi(t+ 1) = xi(t) + ǫ(t) · vi(α(t), xi(t)) · (αi(t) − xi(t)). (11)

In this recursion, thej-th entry of the reinforcement state,xij , can naturally capture “familiarity” weighting
of agent i with action j ∈ Ai, since xij increases if actionj is selected and decreases otherwise.
Accordingly, we have selectedxi to be the familiarity state in the reward functionvi. Such selection
also simplifies significantly the stability analysis of the recursion.

Note that in standard reinforcement learning, e.g., the models of [36], [37], [38], the rewardvi is a
function of the current action profileα(t) andnot a function of the reinforcement statexi(t).

We will generally consider the step-size sequence

ǫ(t) , 1/(tν + 1),

whereν ∈ (1/2, 1]. The parameterν affects the rate of convergence. It is straightforward to show that
for sufficiently larget the vectorxi(·) evolves within the probability simplex which is sufficient for the
stability analysis considered here.

The convergence properties of (11) can be characterized viathe ODE method for stochastic approxima-
tions (cf., [39]). Before proceeding, first defineΩ to be the canonical path space with an elementω ∈ Ω
being a sequence{x(0), x(1), ...}, wherex(t) = (x1(t), ..., xn(t)) ∈ ∆ is generated by the process and
∆ , ∆(|A1|) × · · · × ∆(|An|) . Define also the random variableχτ : Ω → ∆ such thatχτ (ω) = x(τ).
In several cases, we will abuse notation by writingx(τ) instead ofχτ (ω). Let alsoF be aσ-algebra of
subsets inΩ andP a probability measure on(Ω,F) induced by the recursion (11). Theσ-algebraF will
be generated appropriately to allow computation of the probabilities of interest. Finally, letE denote the
expectation with respect to measureP. Define

gi(x(t)) , E[vi(α(t), xi(t)) · (αi(t) − xi(t))
∣

∣x(t)],

and the ODE

ẋ = ḡ(x). (12)

where ḡ(·) , [ḡi(·)]i∈I. The asymptotic behavior of the recursion (11) can be described through the
invariant sets of (12). It has been shown by Proposition 3.4 in [25] that for λ = 0, any pure strategy
profileα∗ = (α∗

1, ..., α
∗
n) is a stationary point of the ODE (12), i.e.,ḡ(α∗) = 0. The sensitivity of stationary

points whenλ > 0 is as follows.
Proposition 6.2 (Sensitivity of stationary points):For any pure strategy profileα∗ which is a strict Nash

equilibrium, and for sufficiently smallλ > 0, there exists a unique continuously differentiable function
ν∗ : R+ → R|A|, such thatlimλ→0 ν

∗(λ) = ν∗(0) = 0, and

x∗ = α∗ + ν∗(λ) ∈ Int(∆) (13)

is a stationary point of the ODE (12). If insteadα∗ is not a Nash equilibrium, then there existε > 0 and
λ0 > 0, such that theε-neighborhood ofα∗ in ∆, Oε(α

∗), does not contain any stationary point of the
ODE (12) for any0 < λ < λ0.
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Proof: The proof follows similar reasoning with Proposition 3.5 in[25].
Note that Proposition 6.2 does not discuss the sensitivity of stationary points which are non-strict Nash

equilibria. However, as the analysis in [25] showed, a vertex cannot be a stationary point of the perturbed
dynamics.

Then, the behavior of the recursion (11) nearby stationary points is described by:
Proposition 6.3 (Convergence & Nonconvergence):For sufficiently smallλ > 0, let x∗ be a stationary

point of the ODE (12) corresponding to a strict Nash equilibrium α∗ ∈ A according to (13). When the
reinforcement learning scheme (11) is applied,P[limt→∞ x(t) = x∗] > 0. If insteadα∗ is not a Nash
equilibrium, then there existε > 0 andλ0 > 0 such thatP[limt→∞ x(t) ∈ Oε(α

∗)] = 0 for all 0 < λ < λ0.
Proof: The proof of the first statement is based on the fact that any stationary pointx∗ which

corresponds to a strict Nash equilibrium (according to (13)) is a locally asymptotically stable point of
the ODE (12). This can be shown by following similar reasoning with Proposition 3.6 in [25]. Then, by
applying Theorem 6.6.1 of [39] we conclude thatP[limt→∞ x(t) = x∗] > 0 (see also Proposition 3.1 in
[25]). The proof of the second statement follows from Proposition 6.2 and the fact that the vector field in
the vicinity of α∗ points towards the interior of∆ for any smallλ > 0 (see also Proposition 3.7 in [25]).

Proposition 6.3 establishes convergence with positive probability of the state-based reinforcement learn-
ing to the set of strict Nash equilibria and non-convergenceto action profiles that are not Nash equilibria.
Convergence or non-convergence arguments cannot be established for perturbations of non-strict Nash
equilibria. However, as we showed in Section V-C, the “familiarity” weights can be utilized to shape
appropriately the set of strict Nash equilibria and also eliminate the set of non-strict Nash equilibria.

Summarizing, in this section we showed that (a) reinforcement learning can be modified to incorporate
“familiarity” weights in the utility functions, and (b) we can establish convergence with positive probability
to the set of strict Nash equilibria.

C. Simulations

In this section, we illustrate the utility of adaptive play and state-based reinforcement learning on
network formation games. To this end, we consider the following two examples: (a) n = 16 nodes are
placed on the vertices of a rectangular grid as shown in Fig. 3, such that the neighborhood of each node
consists of the two closest nodes along the horizontal and vertical axis, e.g.,N6 = {2, 5, 7, 10}; (b) n = 6
nodes are placed on a circle as shown in Fig. 5, such that the neighborhood of each node consists of the
two closest nodes on the circle, e.g.,N1 = {2, 6}.

First, let us consider the setup of example (a) where nodes are placed on the vertices of a rectangular
grid. A typical response of adaptive play withM = 2 andp = 0.1 applied in the connections modelC with
κ0 = 1/8 andκ1 = 0 is shown in Fig. 3, where we have plotted the final graph and therunning average
of the mean distance from neighbors. Note that a critically connected network is formed as expected
by Proposition 5.4. Furthermore, the distances among neighboring nodes vary due to the fact that the
connections modelC does not impose any constraint in the internode distances.

If, instead, the limited connections modelL is applied withK = 3, κ0 = 1/8, κ1 = 0 and γ = 1/2,
then a typical response is shown in Fig. 4. According to Proposition 5.2, we should expect that adaptive
play converges to a connected network such that the internode distance between any two neighboring
nodes is no larger thanK. Indeed, as we observe in Fig. 4, the running average of the mean distance
from neighbors does not exceedK for all agents.

To demonstrate the utility of state-based utility functions in shaping the set of Nash networks, we
consider example (b), where nodes are placed on a circle. Under the connections modelC and the assumed
neighborhood layout, there are only two families of critically connected networks, namely the star-like
network of Fig. 5, and the wheel network of Fig. 6. However, the wheel networks are the only strict Nash
and efficient networks. The adaptive play and reinforcementlearning algorithms introduced here are likely
to converge to any Nash equilibrium (star-like or wheel network), even though the star-like network is a
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Fig. 3. A typical response of adaptive play, withM = 2 andp = 0.1, underC with κ0 = 1/8 andκ1 = 0: (a) Final graph, (b) Running
average of mean distance from neighbors with time.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a)

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Iteration

 

 
Agent  1

Agent  2

Agent  3

Agent  4

Agent  5

Agent  6

Agent  7

Agent  8

Agent  9

Agent 10

Agent 11

Agent 12

Agent 13

Agent 14

Agent 15

Agent 16

(b)
Fig. 4. A typical response of adaptive play, withM = 2 and p = 0.1, underL with K = 3, κ0 = 1/8, κ1 = 0 andγ = 1/2: (a) Final
graph, (b) Running average of mean distance from neighbors with time.

non-strict Nash network. Fig. 5 shows a typical response of adaptive play which converges to the star-like
Nash network under the connections modelC with κ0 = 1/4 andκ1 = 0.
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Fig. 5. A typical response of adaptive play, withM = 2 andp = 0.1, underκ0 = 1/4 andκ1 = 0: (a) Final graph, (b) Running average
of mean distance from neighbors with time.

According to Proposition 5.8, it is straightforward to showthat in the connections modelC with
κ1 ∈ (−κ0, 0) the wheel networks will be the only strict Nash networks. Furthermore, any other (critically
connected) network will not be a Nash network. Fig. 6 shows a typical response of adaptive play in the
connections modelC whenκ0 = 1/4 andκ1 = −1/10, where convergence to a wheel network is observed.
Under the same framework, Fig. 7 shows a typical response of state-based reinforcement learning (11)
where also convergence to a wheel network is observed. Thus,we showed how state-based utility functions
can be utilized to exclude convergence from non-efficient Nash networks.
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Fig. 6. A typical response of adaptive play, withM = 2 and p = 0.1, underC with κ0 = 1/4 and κ1 = −1/10: (a) Final graph, (b)
Running average of mean distance from neighbors with time.
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Fig. 7. A typical response of state-based reinforcement learning (11) withλ = 0.01 andν = 2/3, underC with κ0 = 1/4, κ1 = −1/10:
(a) Final graph, (b) Running average of mean distance from neighbors with time.

VII. CONCLUDING REMARKS AND FUTURE WORK

We presented a strategic-form game formulation for the problem of distributed network formation.
Some key distinguishing features of this work include: (i) directed links and neighborhood constraints, (ii)
distance-dependent utility functions which guarantee existence of Nash networks; (iii) state-based utility
functions that can model dynamic phenomena, such as establishment costs, and can shape the set of Nash
networks; and (iv) conditions which guarantee existence ofNash equilibria for the state-based extension
of weakly acyclic games. Although state-based utility functions were not necessarily associated with a
specific form of learning dynamics, we showed that, when combined with adaptive play or reinforcement
learning, they provide an equilibrium selection approach in network formation games. For example, we
showed how efficient graphs can be the only attractors of adaptive play and reinforcement learning when
a negative establishment cost is considered. The proposed reinforcement learning scheme also revealed
the potential of payoff-based learning approaches (i.e., when nodes only have access to measurements of
their utility) for equilibrium selection in network formation.

A few directions in which this work could be extended include: (a) designing alternative utility functions,
(b) reducing communication complexity, and (c) designing alternative distributed learning processes. In
particular, although the networks emerging through the proposed scheme exhibit desirable properties, e.g.,
connectivity, bounded-hop diameter and small number of links, different scenarios may require alternative
properties. For example, minimal number of links may not be desirable due to issues related to sensitivity to
failures. Furthermore, although we showed analytically that the proposed reinforcement learning scheme
converges locally to the strict Nash equilibria, it would bedesirable to establish global convergence
arguments, which is currently an open research problem, notnecessarily restricted to network formation
games.
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APPENDIX

Proof of Proposition 5.1: Part 1:Suppose a network,α, is not a Nash equilibrium. Suppose further
that it is not connected. Then there existi, j ∈ I such thatj ∈ Ni and (j → i) * α. (Recall our
assumption that connectivity is feasible with the underlying neighborhood structure.) In theC framework,
settingα′

i = αi ∪ j increases the utility of agenti by 1 − (κ0 + κ1) > 0 without decreasing the utility of
any other agent. Furthermore, sinceκ1 ≥ 0,

vi((α
′
i, α−i), α

′
i) ≥ vi((α

′
i, α−i), αi) > vi(α, αi). (14)

Therefore,α′
i ∈ ISi(α) and, if we define the coordination functionφ : A → R such that

φ(α) ,
∑

i∈I

vi(α, αi) (15)

(i.e., φ is the value of the graph), thenφ(α′
i, α−i) > φ(αi, α−i). Therefore, the coordination property is

satisfied.
Now suppose thatα is not a Nash equilibrium but is connected, and letα′

i ∈ BRi(α). We can assume
that agenti maintains connectivity to all ofNi. Otherwise, by arguments above, we can replaceα′

i with
anotherα′′

i ∈ BRi(α) by adding links that maintain connectivity. As a result, thekey difference between the
new network(α′

i, α−i) and old network(αi, α−i) is that agenti maintained connectivity with fewer links.
This does not reduce the utility of other agents. Again, since κ1 ≥ 0, the actionα′

i satisfiesα′
i ∈ ISi(α).

Therefore, the coordination property is satisfied when we define the coordination functionφ as in (15).
Part 2: In moving from the connections modelC to the limited connections modelL, simple connectivity

to neighbors is insufficient. Rather, neighbors must be within a radius ofK to contribute to benefits. Now
suppose that a network,α, is not a Nash equilibrium. Furthermore, assume that there exist i, j ∈ I such
that j ∈ Ni and distα(j, i) > K, i.e., neighborj is outside of the benefit radiusK. In theL framework,
settingα′

i = αi ∪ j changes the utility of agenti by

βi(α
′)
(

1 − γ
di(α

′)

1 + di(α′)

)

− βi(α)
(

1 − γ
di(α)

1 + di(α)

)

− (κ0 + κ1).

Since agenti added a link,βi(α
′) ≥ βi(α) + 1 and di(α

′) ≤ di(α). These inequalities imply that the
change in utility is at least

(

1 − γ
di(α)

1 + di(α)

)

− (κ0 + κ1) > 1 − γ − (κ0 + κ1),

which is positive by assumption. Therefore,α′
i ∈ BRi(α). Furthermore, sinceκ1 ≥ 0, we have1−γ−κ0 >

0 and therefore the condition (14) is also satisfied, i.e.,α′
i ∈ ISi(α). Thus, if we defineφ as in (15), then

the game satisfies the coordination property.
Now suppose thatα is not a Nash equilibrium but satisfies distα(j, i) ≤ K for all i, j such thatj ∈ Ni.

Let α′
i ∈ BRi(α). Again, we can assume that agenti maintains connectivity (within radiusK) to all of Ni.

However,unlike the C framework, maintaining this connectivity to neighbors does not imply that other
nodes have maintained connectivity to their neighbors within a radiusK.

Let us decompose the two actionsαi andα′
i in terms of links that were (i) kept, (ii) added, and (iii)

dropped. Specifically, define the disjoint sets

Nkeep = αi ∩ α
′
i, (16a)

Nadd = α′
i\Nkeep, (16b)

Ndrop = αi\Nkeep. (16c)
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Each of these sets is a subset ofNi. Sinceα′
i is a better reply,

|Ni|
(

1 − γ
di(α

′)

1 + di(α′)

)

− κ0 |Nadd ∪Nkeep| − κ1 |Nadd| >

|Ni|
(

1 − γ
di(α)

1 + di(α)

)

− κ0 |Ndrop ∪Nkeep| .

Sinceα started with no deficient agents,di(α) = 0, and so

κ0(|Ndrop| − |Nadd|) − κ1 |Nadd| > |Ni| γ
di(α

′)

1 + di(α′)
. (17)

The left-hand-side in (17) is bounded from above by(|Ni|−1)κ0. Assume that the networkα′ has deficient
agents inBi(α

′;K). Then the right-hand-side of (17) is bounded from below by|Ni| /2, and so

κ0 >
|Ni|

|Ni| − 1
·
γ

2
.

This contradicts the assumed condition onκ0. Accordingly,α′ must not have deficient agents inBi(α
′
i;K).

Intuitively, the assumed bound onκ0 implies that an agent will not sacrifice downstream deficiency just
to reduce its number of links. Sinceκ1 ≥ 0, α′

i ∈ ISi(α). Also, since the networkα′ has no deficient
agents, none of the utilities of agents other thani has been reduced. Therefore, by definingφ as in (15),
the game satisfies the coordination property.

Proof of Proposition 5.4:(Critically connected⇒ Nash) Letα∗ correspond to a critically connected
network. Suppose for some agenti ∈ I and some actionα′

i, α
′
i 6= α∗

i ,

vi((α
′
i, α

∗
−i), α

∗
i ) > vi((α

∗
i , α

∗
−i), α

∗
i ), (18)

i.e., agenti’s utility of α′
i is greater than that ofα∗

i . From the proof of Proposition 5.1, we can assume
that α′ is also connected. As in (16), we can writeα∗

i = Nkeep ∪ Ndrop, andα′
i = Nkeep ∪ Nadd. Clearly

if Ndrop = ∅, then (18) cannot hold sinceα∗ is connected. Assume thatNdrop 6= ∅. The utility of agent
i in case ofα∗ equals

vi((α
∗
i , α

∗
−i), α

∗
i ) = (n− 1) − κ0(|Nkeep| + |Ndrop|).

In case ofα′, the utility of i is

vi((α
′
i, α

∗
−i), α

∗
i ) = (n− 1) − κ0(|Nkeep| + |Nadd|).

Thus,

vi((α
′
i, α

∗
−i), α

∗
i ) − vi((α

∗
i , α

∗
−i), α

∗
i ) =

κ0(|Ndrop| − |Nadd|) > 0.

The only possibility for (18) to hold is if|Ndrop| > |Nadd|.
We now show that|Ndrop| > |Nadd| contradictsα∗ being a critically connected network.
− For each element ofNadd, construct a path inα∗ to i. These paths must pass throughNkeep ∪Ndrop.
− Since|Ndrop| > |Nadd|, there exists ak∗ ∈ Ndrop that is not part of any of these paths.
− Construct a path inα′ from k∗ to i. This path, prior to reachingi must pass through(Nkeep ∪Nadd).

Prior to hitting a node in(Nkeep ∪Nadd), this path lies inα∗.
− The conclusion is a path fromk∗ to an element ofNadd or an element ofNkeep. In either case, the

path can be continued inα∗ to i without passing throughk∗. This contradicts the critically connected
assumption onα∗.

As a result,α∗ cannot be a Nash equilibrium.
(Nash⇒ Critically connected) Suppose a Nash network is not critically connected. Then there exists
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an agenti that can drop a direct link to an agentj ∈ Ni but still maintain connectivity toj, and hence
receive the benefits ofj without incurring the maintenance cost ofj. Therefore, the original network
cannot be a Nash network.


